Physiological Response of the Hard Coral Pocillopora verrucosa from Lombok, Indonesia, to Two Common Pollutants in Combination with High Temperature
نویسندگان
چکیده
Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16-95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81-100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming.
منابع مشابه
Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa
This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site...
متن کاملSize-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2.
Body size has large effects on organism physiology, but these effects remain poorly understood in modular animals with complex morphologies. Using two trials of a ∼24 day experiment conducted in 2014 and 2015, we tested the hypothesis that colony size of the coral Pocillopora verrucosa affects the response of calcification, aerobic respiration and gross photosynthesis to temperature (∼26.5 and ...
متن کاملResponse of Pocillopora verrucosa to corallivory varies with environmental conditions
We wounded Pocillopora verrucosa to simulate injury caused by fish corallivores, and then evaluated impacts of this damage on coral performance under different temperatures (26.6 and 29.6°C) and flow speeds (6 and 21 cm s–1) in microcosms. Colony growth (weight), photosynthetic efficiency (maximum dark-adapted quantum yield of PSII, Fv/Fm [where PSII is Photosystem II, Fv variable fluorescence ...
متن کاملReef structure regulates small-scale spatial variation in coral bleaching
Coral bleaching is often characterized by high spatial variation across reef systems. Using a field survey and manipulative experiment, we tested whether the physical structure of coral reefs modifies environmental conditions that, in turn, influence spatial variation in bleaching in 3 scleractinian corals, Pocillopora verrucosa, Acropora elseyi, and Porites rus. Corals inhabit mainly the hard-...
متن کاملSpatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea
Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015